Caputo derivatives of fractional variable order: Numerical approximations
نویسندگان
چکیده
منابع مشابه
Variable-order fractional derivatives and their numerical approximations
This paper addresses complex, variable-order fractional derivatives, enlarging the definitions for the real case. Implementations combining discretised Crone approximations using fuzzy logic and interpolation are also addressed.
متن کاملA numerical evaluation and regularization of Caputo fractional derivatives
Numerical evaluations of Caputo fractional derivatives for scattered noisy data is an important problem in scientific research and practical applications. Fractional derivatives have been applied recently to the numerical solution of problems in fluid and continuum mechanics. The Caputo fractional derivative of order α is given as follows f (t) = 1 Γ(1− α) ∫ t 0 f (s) (t− s)α ds, 0 < α < 1 The ...
متن کاملNumerical Solution of Caputo-Fabrizio Time Fractional Distributed Order Reaction-diffusion Equation via Quasi Wavelet based Numerical Method
In this paper, we derive a novel numerical method to find out the numerical solution of fractional partial differential equations (PDEs) involving Caputo-Fabrizio (C-F) fractional derivatives. We first find out the approximation formula of C-F derivative of function tk. We approximate the C-F derivative in time with the help of the Legendre spectral method and approximation formula o...
متن کاملNumerical study for multi-strain tuberculosis (TB) model of variable-order fractional derivatives
In this paper, we presented a novel multi-strain TB model of variable-order fractional derivatives, which incorporates three strains: drug-sensitive, emerging multi-drug resistant (MDR) and extensively drug-resistant (XDR), as an extension for multi-strain TB model of nonlinear ordinary differential equations which developed in 2014 by Arino and Soliman [1]. Numerical simulations for this varia...
متن کاملExistence of Minimizers for Fractional Variational Problems Containing Caputo Derivatives
We study dynamic minimization problems of the calculus of variations with Lagrangian functionals containing Riemann–Liouville fractional integrals, classical and Caputo fractional derivatives. Under assumptions of regularity, coercivity and convexity, we prove existence of solutions. AMS Subject Classifications: 26A33, 49J05.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Communications in Nonlinear Science and Numerical Simulation
سال: 2016
ISSN: 1007-5704
DOI: 10.1016/j.cnsns.2015.10.027